If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=21y=36=0
We move all terms to the left:
3y^2-(21y)=0
a = 3; b = -21; c = 0;
Δ = b2-4ac
Δ = -212-4·3·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-21}{2*3}=\frac{0}{6} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+21}{2*3}=\frac{42}{6} =7 $
| a+11=21a-8 | | 10x-12x=15 | | 3y^=21y=36=0 | | b-3-5b=13 | | 17d=8d-3 | | r+5/6=3/8 | | 6x-20x=20 | | 1005x+2=10004x-1 | | M/6=y+19 | | 6x+2x=7x-9 | | X+(x-13)=47 | | -12=y-212 | | 4x-9+65=180 | | 10*y=133 | | 10x-100=15x+200 | | -2x+4=7x-8 | | 2x+1=10x-25 | | 8x=3x+37 | | 4x-12=6x-72 | | n=2.2 | | 8g+4=6g-8 | | 72÷6=n | | 5•(2x+4)=30 | | -3k+5-6k=-4 | | d+5/9=-4 | | 5•2x+4=30 | | 63÷3=n | | 10=-2c=22 | | -5-x=2x-(4x+6 | | 1/2-4x=-8 | | -19d-19=-12d+16 | | 3/4(2x-5)-5/4(3x+9)=6 |